ThaI (Mahajan-Vinay'97) DETEVBP.
Def: Let G " (V, E) a directed weighted graph. A "chow" (acronym of "Closed walk") in G is a walk ${ }^{C}\left\langle w_{1}, \ldots, w_{l}\right\rangle$ such that $w_{1}=w_{l}$, and $w_{1}<w_{2}$ for all $1<i<l$ (with respect to a freed order on the vertex set V).
Head $(C)=w$ is called the head of C.
A chow sequence in G is a sequence of claws, $W=\left\langle C_{1}, \cdots, C_{k}\right\rangle$, such that "1 Head $\left(C_{1}\right)<$ Head $\left(C_{2}\right)<\ldots$ Head $\left(C_{k}\right)$.
and (2) total number edges in W (counsel with multiplicity) is $n:=|V|$.
Remark: A (simple) cycle is a claw, and a cycle cover is a claw sequence.
For a cycle cover W, son $(W)=(-1)^{\text {\# even cycles in } w \text {. }}$
 into cycles.

$$
\text { and the weight } w(W):=\prod_{e \in W} w(e) \text { viewed as a multisce. }
$$

Let A_{G} be the weighted adjacney matrix of G, ie. $\left(A_{G}\right)_{i j}=w(i, j)$.
Thu 2 : $\operatorname{det}\left(A_{G}\right)=\sum_{W \text { claw sequence }}^{\operatorname{in} G} \operatorname{sgn}(W) w(W)$
pt: We clam:
Clam: \exists an involution σ (ie, σ^{2} id $)$ on the set of claw sequences in G such that: If W is a cycle cover, then $\sigma(W)=W$.

If not, $\operatorname{sgn}(\sigma(w))=-\operatorname{sgn}(w)$ and $w(\sigma(w))=w(W)$.
Thin 2 follows front's claim and the fact $\operatorname{det}\left(A_{G}\right)=\sum_{w \text { curleare }} \operatorname{sgn}(w) w(W)$.

Thin 2 follows front's claim and the foot $\operatorname{det}\left(A_{G}\right)=\sum_{\substack{w y_{c l e} \\ \operatorname{ing} G}} \operatorname{sgn}(w) w(W)$. So it remains to prove the claim.

Consider a char sequence $W=\left\langle C_{1}, \cdots, C_{k}\right\rangle$.
Choose the smallest i such that $\left\langle C_{i+1}, \cdots, C_{k}\right\rangle$ is a set of disjoint simple cycles.
If $i=0$, or equivalatly, w is a cycle cover, let $\sigma(\omega)=W$, Now suppose $i>0$, ie. W is not a cycle cover.
Traverse C_{i} starting from Head $\left(C_{i}\right)$ until one of the follaris happens:
(1) We hit a vertex v that touches $C_{j} \in\left\{C_{i+1}, \cdots, C_{k}\right\}$.
(2) We hit a vertex v that completes a siple cycle C within C_{i}.

AS W is not a cycle cover, ether (1) or (2) happens.
They connot both happen. Otherube, we hit v that couplets a siple cycles and $v \in C_{j}$, but then (1) would happen eariler when we first visit v,
We define $\sigma(w)$ in cases (1) and (2):
Case (1): $v \in C_{i}$ touches $C_{j} \in\left\{C_{L+1}, \cdots, C_{k}\right\}$
Merge C_{i} and C_{j} into C^{*}
Note: H cad $\left(C_{k}\right)<H_{\text {read }}\left(C_{j}\right)$ and hence Head $\left(C_{1}\right) \notin C_{j}$.
So C^{*} is a chow with H end $\left(C^{*}\right)=H$ ad $\left(C_{i}\right)$.
Let $\sigma(W)=\left\langle C_{1}, \cdots, C_{i-1}, C^{*}, C_{i+1}, \cdots, C_{j-1}, C_{j+1}, \cdots, C_{k}\right\rangle$.
Note $\operatorname{sgn}(\sigma(\omega))=-\operatorname{sgn}(\omega)$ since $\#$ claws decreases by 1 . and $w(\sigma(w))=w(W)$ sauce the edge multiset dosser change.
Case (2): V completes a simple ry de C within C_{i}.

Case (2): v completes a simple ry de C within C_{i}.

$$
\text { Say } C_{i}=\langle w_{1}, \cdots \underbrace{v \cdots, v}_{C}, \cdots, w_{e}\rangle
$$

$H_{\text {ald }}(c)=w_{1} \neq v$ by the definition of chows.
peconpobe C_{i} into C and $C_{2} \backslash C_{\text {. }}$.
Then Head $\left(C_{i} \backslash C\right)=$ Head $\left(C_{i}\right)<$ Head (C).
As we are not in C ass 1), C is disjoint from $C_{L}+1, \cdots, C_{k}$ So $\operatorname{Head}(C) \notin\left\{H e a d\left(C_{i t 1}\right) \cdots, \operatorname{Head}\left(C_{k}\right)\right\}$.
$\operatorname{Lot} \sigma(W)=\left\langle C_{1}, \cdots, C_{i-1}, C_{i} \backslash C_{1}, C_{i+1}\right.$, - $\lrcorner C$ inserted at the ingot notion acondy to $H_{\text {fad }}$ (c)

Note ign $(O(w))=-\operatorname{sgn}_{n}(w)$ she \# cows increases by l, and $w(\sigma(w))=w(w)$ since the edge multe-set doesuct change.
It is easy to verify that $\sigma^{2}=l d$ (and σ exchanges Cases (1) and (21))
Proof of Thu ((Sketch): Let G be the weighed directed graph with w(ijj) $H_{i j}$ tar 1 Knish. We say $W=\left\langle C_{1}, \ldots, C_{k}\right)$ is a partial chow sequence if C_{1}, \ldots, C_{k-1} are cows,
C_{k} is a prefix of a chow, and $H_{\operatorname{led}}\left(C_{1}\right)<\cdots<\operatorname{Head}\left(C_{k}\right)$

$$
\text { For each }\left\{\begin{array}{l}
p=\text { pouty of } n+\# \text { chows already constructed } \\
n=\text { head of the chow being constructed } \\
u=\text { the vertex the current dow has readied } \\
i=\neq e d g e ~ t r a v e r s e d ~ i n ~ t h i s ~ a n d ~ p r e e e d i n g ~ c l a w s, ~
\end{array}\right.
$$

Let $f_{p, h, u, i}$ be the polynomial

$$
\sum_{\substack{\text { parted chow } \\ \text { sequence } w \\ \text { in }}} \prod_{\substack{\text { Funthoset }}} w(e) \in \mathbb{F}\left[x_{n}, \cdots, x_{n n}\right] .
$$

Using dynamic programing, build an ABP:

Using dynamic programing, bull an ABP:
where for each (p, h, u, i), the ABP contains a vertex $V_{p, h, u, i}$, that computes $f_{p, h, u, i}$ (deals left as an exendse. Or see Makajan-Vinay). Let t_{f} (resp. t.) collects the weights of all dow sequeres with positive (resp, negatue) sign.
And let $t=t_{+}-t_{-}$. Then the ABP computes

We say $t=\mathbb{N}^{+} \rightarrow \mathbb{N}^{+}$is $q P$-bounded if $\exists c>0$ sit. $t(n) \leq 2^{(\log n)^{c}}$ for all $n \in \mathbb{N}^{+}$
Def: $V Q P=$ set of polynomial faulles $\left(f_{n}\right)$ s.t. f_{n} is computed by a croce of sine st (n), where t is ap-bouded.
We say $\left(t_{n}\right) \leq_{q_{p}}\left(g_{n}\right)$ if $f_{n} f_{n} \xi_{p} g_{t(n)}$ forosection all n and a qp-bonded function t.
Thu: DET is complete in VP and VQP under ap-projections.
Pf: We know DETEVP $\subseteq V Q P$.
Let $\left(f_{n}\right) \in V Q P$. Then f_{n} is computed by a clucatt ${ }^{C}$ of size $\leq 2^{(\operatorname{logn} n)^{c}}, c>0$. By depth reduction, we may assume $\operatorname{depth}(c) \leqslant(\log (\operatorname{sine}(c)))^{2}$

$$
\leqslant(\log n)^{2} c
$$

Then f_{n} is compuntal by a formula of size $\leq 2^{(\log n)^{2} C}$. and hence on $A B P$ of size $\leq 2 O\left((\log n)^{2} c\right)$ x nt a , 1 n no... Jato... in......
and hence an ABP of size $\left.\leq 2^{U\left((\log n)^{2} c\right.}\right)$
AS DET is $A B P$-complete under p-projections $f_{n} \leq D_{E T} m$, where $m \leq 2^{\left(\operatorname{logn}_{n}\right)^{\prime}}$ for same $c^{\prime}>0$.

