8. Determinant is in VBP

Saturday, September 16, 2023 10:35 AM

Thus (Mahajan-Vinay 197) DETGVBP.
104) : Lee G be a diversal weighted graph. A 'clow' (acrowy mody 'closed walk')
in G is a walk
$$(\exists w_1, \dots, w_k)$$
 such that $w_1 = w_k$, and $w_1 < w_1$ for all
 $1 < i < l$ (with respect to a fixed order on the vertex see V).
Howd (C) = w_1 is called the head of C.
A clow sequence in G is a sequence of claws, $W = \langle C_1, \dots, C_k \rangle$,
such that "Head (C₁) < Head(C₂) < ... < Head CC_k),
and iz) total number edge in W (carded with multiplicity) is $N := 1VI$.
Remark: A (simple) cycle is a claw and a cycle cover is a claw sequence.
For a cycle cover W , sign (W) = $(-1)^{\#}$ form cycles in W , e.g. by decarposity.
The is easy to prave that $syn(W) = (-1)^{n+\#}$ cycles in W , e.g. by decarposity.
For a claw sequence W , define $syn(W) := [1]^{n+\#}$ class in W ,
and the weight $w(W) := \overline{ti} W(e)$
Let A_G be the weighted adjacang motor's of $(\tau, ie. (A_G)_{ij} = w(ij))$.
Then² : $det(A_G) = \overline{\sum} syn(W)W(W)$
 W class sequence in G
 $PI = We clain:$
 $(lahn: \exists an involution of (ie. of a clower, then of(W) = W.
It us for $Sign(F(W)) = -syn(W)$ and $w(M)$
 W is a cycle cover, then of(W) = W.
Thus 2 follows from this claim and the frain $det(A_f) = \overline{\sum} syn(W) w(W)$.$

Then 2 follows from this claim and the frace
$$det(A_{0}) = \sum_{v \in V} \frac{syn(w)}{v \in V} w(W)$$
.
So it remains to prove the claim.
Consider a claw sequence $W = \langle C_{1}, \cdots, C_{K} \rangle$.
Choose the smallest is such that $\langle C_{i,1}, \cdots, C_{K} \rangle$ is a set of disjoint
simple cycles.
If i=0, or equivalently, W is a cycle cover, let $\sigma(W) = W$.
Now suppose i=0, i.e. W is not a cycle cover.
It reverse Cr. starting from Head (Cr.) with an of the followly happens:
(1) We hat a vertex v that touches $C_{j} \in C_{i+1}, \cdots, C_{K}$?
(a) We hat a vertex v that coupletes a simple cycle C within Cr.
As W is not a cycle cover, either (i) or (2) happens.
They counse both happen. Otherwhe, we hat v that we first v bit v .
We define $\sigma(W)$ in cases (i) and (z):
(a) we define $\sigma(W)$ in cases (i) and (z):
(a) C_{i} touches $C_{j} \in C_{i+1}, \cdots, C_{k}$?
(b) C_{i} touches $C_{j} \in C_{i+1}, \cdots, C_{k}$?
(c) C_{i} touches $C_{j} \in C_{i+1}, \cdots, C_{k}$?
Merge (i and C_{j} has C^{*} W of $v \in C_{i}$.
Nore: Haved (Cr.) \subset Head (Cr.) = Head (Cr.)
Let $r(W) = \langle C_{i}, \cdots, C_{i-1}, C^{*}, C_{i+1}, \cdots, C_{j-1}, C_{k}$?
Note sign($\sigma(W)$) = $w(W)$ since the edge waltweet degine by I .
and $w(\sigma(W)) = w(W)$ since the edge waltweet degine.
(a) C_{i} C_{i}

Using dynamic programy, build an ABP:

$$S \swarrow (V_{P,h,u_{1}}) \implies t + \frac{1}{2} t$$
where for each (P,h,u_{1}) is the ABP contains a vertex $V_{P,h,u_{1}}$ that capters
$$f_{P,h,u_{1}} (details [left as an exercise. Or see Mohojan - Knay)$$
Let $t_{1} (verp. t_{-}) collects the weights of all dow sequences
with positive (resp. negative) sign.
And let $t = t_{+} - t_{-}$. Then the ABP capters
$$\sum_{v \in W} Sym(w) \prod_{v \in W} W(v) = det(Ag), where Ag=(X_{ij})_{n \in V}$$
We say $t = h^{j-1}h^{j}$ is qy -bunded if $\exists croo s.t. t(n) \leq 2^{leg+1}c$ for all u.t. h^{j-1} .
We say $t = h^{j-1}h^{j}$ is qy -bunded if $\exists croo s.t. t(n) \leq 2^{leg+1}c$ for all u.t. h^{j-1} .
We say $(t_{ij}) \in q_{ij}$ bunded for f_{ij} and $f_{ij}$$

and hence an ABP of size ≤ 2 ((logn)2) As DET is ABP-complete under p-projections $f_n \in DET_m$, where $m \leq 2^{(log_m)^c}$ for some c' > D